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  1. Introduction 

 Economics investigates the consequences of interlinked individual decisions within specifi c institu-
tional frameworks such as markets. As the idealizations required to make models of interdependent 
decision-making under multiple constraints analytically tractable are unavoidably heroic, it would 
seem an obvious advantage to start with theoretically and empirically more palatable assumptions 
about the individuals and their institutional environment and let the computer worry about deter-
mining the consequences of those assumptions. Furthermore, many other applied fi elds of science 
routinely run computer simulations to evaluate the e� ects of possible interventions and policies. As 
the social science with most political clout, should it not be expected that virtual experiments about 
possible economic policies would be central to economic practice? 

 The fi nancial crisis brought two key constructs necessary for the tractability of central economic 
model templates into critical focus: the representative agent and equilibrium. Together the ubiqui-
tous use of the representative agent and the equilibrium assumption arguably preempted inquiries 
into the e� ects of di� erent heterogeneities, biases, herding e� ects, in particular, and endogenously 
generated crises in general. The failure of standard economic models to foresee or (for a long time) 
even analyze the crisis constituted for many a fundamental crisis in economic theory (e.g.,  Kir-
man 2010 ,  2016 ;  Stiglitz 2018 ). A natural way to implement more realistic behavioral assumptions, 
heterogeneities, imperfect information, interdependencies, and out-of-equilibrium dynamics is by 
computer simulation. 

 There are four main kinds of simulation: discretizations, microsimulations, Monte Carlo, and 
agent-based simulations (see  Gilbert and Troitzsch (1999 ) for a detailed description of these meth-
ods). Of these, the fi rst three are widely and increasingly used in economics, while the fourth, 
albeit also being used more and more, continues to face methodological resistance.  Boumans 
(2020 ), however, argues that simulations are already widespread in economics and charges meth-
odologists for lagging behind in describing the change. Most of the arguments in philosophy of 
science on simulation in economics concern agent-based models and Monte Carlo. The reason 
might relate to the context in which the di� erent kinds of simulations are used. Discretizations are 
mainly used in macroeconomics, and microsimulations are used in policy design. The epistemic 
role of discretization qua simulation is minuscule compared to other methodological issues, and 
while microsimulations do raise philosophical questions, thus far these have been treated in spe-
cialized outlets. 
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 The lackluster reception of simulations can be contrasted with the relatively rapid spread of 
experimental methods, fi rst in terms of behavioral economics (see Nagatsu, Chapter 24) and now 
in terms of natural and fi eld experiments emphasized by the proponents of the credibility revolution 
(see Favereau, Chapter 25). Furthermore, economics is certainly an increasingly  computational  sci-
ence. As the profession has grown increasingly data driven in what has become known as the cred-
ibility revolution, many undergraduate programs now put as much emphasis on learning R as they 
do on the basics of demand theory. The resistance to simulations, therefore, is clearly not solely due 
to any general methodological conservativeness in economics. 

 In this chapter, we fi rst review central debates in the emerging philosophy of simulation subfi eld. 
After that, we will briefl y discuss key types of simulation in economics: Monte Carlo methods, 
dynamic stochastic general equilibrium models, which constitute the mainstream in current macro-
economics, and the more marginal subfi eld of agent-based computational economics. As we will see, 
the general philosophical questions concerning simulation take very distinct forms in the context of 
economics. We argue that the methodological peculiarities present in all of these cases provide us 
with interesting lessons about the way in which the role of theory is conceived in economics.  

  2. Philosophical Questions in the Use of Simulations 

 Is there a specifi c “epistemic kind” of computer simulations with distinctive epistemic properties 
and problems? In a provocative opening article for a special issue of  Synthese ,  Roman Frigg and 
Julian Reiss (2008  ) set the challenge for the emerging philosophy of simulation to explicate what 
novel philosophical issues simulations pose that are not common to all scientifi c modeling. Frigg and 
Reiss argue that the epistemological, semantic, and ontological questions pertaining to computer 
simulations do not di� er from those concerning models in general and that simulations do not call 
for a “new philosophy of science.” Although computer simulations certainly share many general 
methodological questions with analytically solvable models, the philosophical literature has delved 
into issues ranging from the implications of discretization (Lenhard 2019) all the way to the possible 
demise of anthropocentric epistemology ( Humphreys 2009 ). 

 We begin by reviewing the debate on the defi nition of computer simulation as a way of locating 
putative features that might philosophically distinguish simulations from other models. Intuitively, 
not all computational exercises count as simulations, as some are simply, well, computations. Fur-
thermore, not all simulations are carried out with computers. Physical analogue simulations like 
wind tunnels seem to have epistemological characteristics that render them distinct from ordinary 
physical experiments (see  Trenholme 1994 ;  Dardashti et al. 2017 ;  Durán 2017  for accounts of analog 
simulations). Although the consensus seems to be that there is something distinct about simulations, 
not surprisingly no agreement has been reached on what exactly that distinct feature is. 

  2.1 What Is a Computer Simulation? 

 Paul  Humphreys (1991 ) originally defi ned computer simulations simply as any computer-imple-
mented method used to explore properties of mathematical models without analytical solutions. As 
 Durán (2021 ) points out, this is in line with a long tradition of interpreting simulations in terms of 
solving intractable mathematical problems. This would tie the defi nition of computer simulation 
very closely to (1) (a set of) existing mathematical models and (2) whether it allows for closed-form 
solutions. The fi rst constraint is problematic because not all computer simulations, such as cellular 
automata and agent-based models, are direct computational realizations of existing mathematical 
models. The second constraint is problematic because it is not clear why the mathematical fact of 
not having an analytical solution would necessarily correspond to a categorical di� erence in the way 
a model represents the modeled system. 
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 Partly due to these concerns, Stephan  Hartmann (1996 ) suggested that a simulation is a process 
imitating a process. This defi nition emphasizes both the representational function and the  dynamic
nature of simulations. Simulations are always simulations  of  something, and they represent something 
unfolding  through time. This falls within the second major tradition of conceptualizing simulations 
in the sciences ( Durán 2021 ). This defi nition is also applicable to physical analogue simulations 
more broadly.  Hughes (1999 ),  Humphreys (2004 ), and  El Skaf and Imbert (2013 ), among others, 
have questioned whether time and dynamics are really essential to simulation. They agree on the 
importance of representation and the processual nature, however, and propose that simulations trace 
a trajectory of a (mathematical) system in its state space. Most often this is a trajectory along the time 
dimension, but not necessarily. 

 Although most simulations of  economic phenomena  include such a dynamic aspect, even this more 
abstract defi nition rules out an important class of computational techniques in economics that many 
consider to be simulations: Monte Carlo methods. We consider Monte Carlo methods more closely 
in Section 3.1.  

  2.2 � e Epistemology of Computer Simulation 

 The debate about the defi nition of simulation is only interesting if there is an interesting and distinct 
“epistemic kind” to be defi ned. The question of the putative special epistemic status of computer 
simulations is motivated, on the one hand, by the similarity of simulation to experimentation and 
the consequent possibility of uncovering truly surprising and novel results and, on the other hand, 
by the seemingly unavoidable fact that computer simulations are “nothing more” than mere models 
with no direct causal interaction with the modeled reality. 

 The epistemology of computer simulations also depends on what the simulation is used for. Here, 
we discuss only “scientifi c” uses and leave out, for example, purely pedagogical functions. Yet, even 
this leaves a great number of rather distinct roles in economics. Computer simulations are used in 
forecasting (including nowcasting), the evaluation of policy scenarios, theoretical modeling, market 
design, and, depending on where the lines of simulation are drawn, various forms of data analysis. 

 Furthermore, the use of computer simulations involves several distinctive epistemological 
questions pertaining to the functioning of the computer simulation as a system in its own right, 
such as whether the program is doing what it is supposed to do (that there are no errors in the 
code) and whether the digitization introduces biases into the computation (e.g., truncation 
or rounding errors). Many of these questions belong squarely within the domain of computer 
science (e.g., to “stability theory”). We will not discuss this literature because it is vast and 
because we are not aware of any economic simulations in which verifi cation could be done 
formally (see, e.g.,  Beisbart and Saam (2019 ) for some contributions to this literature). The 
philosophical question is whether these, or some other features of simulation, render computer 
simulations epistemologically distinct from analytically solvable models, analogue simulations, 
or experiments. 

 At fi rst glance, the practice of simulation is often strikingly similar to that of “material” experi-
mentation. Like an experiment, a simulation is fi rst assembled and then left to run “on its own.” 
Like an experiment, a simulation yields not conclusions but masses of raw data requiring further 
analysis and interpretation. Like experimentation, simulation practice involves looking for errors in 
the procedure, benchmarks for what kind of results ought to emerge, and so on. As Francesco  Guala 
(2002 ) points out, both forms of inquiry require distinct judgments of internal and external validity. 
In macroeconomics, the use of simulations is often characterized as numerical experimentation, and 
 Reiss (2011 ) even defends the use of simulations in economics by arguing that they should be used 
because they provide experimental data that are otherwise lacking in economics (see  Norton and 
Suppe (2001 ) for a similar argument in climate science). Accordingly,  Winsberg (2001 ,  2003 , 2010) 
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argued that the epistemology of simulation is motley and that it is self-vindicating in the same way 
as that of the experimental sciences. 

  Guala (2002 ) formulated what has become known as the  materiality thesis : simulations are inferior 
to experiments in that the former cannot experiment with the material basis of the target system 
itself.  Parker (2009 ) challenged the materiality thesis by arguing that what is relevant for the epis-
temic evaluation of simulations is relevant similarity and that material similarity is not always the 
relevant kind of similarity (see also Winsberg 2009). When formal similarity is relevant instead of 
material, simulations and experiments seem to be on a par. Parker also argued that the wider epis-
temic unit of simulation study, which includes all of the practices around constructing the simulation 
model, counts as a material experiment. A computer running a program is a physical system, and 
simulations thus are also experiments on a physical system. 

 Nevertheless, even if the user is experimenting  on  this physical system, the user is not running an 
experiment  about  the physical system ( Durán 2013 ,  2018 : 64–68).  Norton and Suppe (2001 ) have 
argued that because, in running the simulation, the computer can  realize  the same abstract structure 
as the target system, it can function as an experimental stand-in for its target in a very concrete 
sense. This claim, however, seems questionable as at least all digital simulation essentially involves 
numerical approximation and numerous individual runs, rather than direct realization of mathemati-
cal structures ( Imbert 2017 ). 

  Morrison (2009 ,  2015  ) argues that because simulations are in fact used as measurement devices, 
they should also be counted as experiments. Morrison, as well as  Massimi and Bhimji (2015 ), provides 
examples of measurements in physics in which the data are practically impossible to interpret without 
simulation. Measurement often requires simulation in turning the raw data into a data model usable for 
making inferences about the target (see also  Durán 2013 ). Morrison does not need to commit to a ques-
tionable view of measurement that does not require a direct physical causal connection to the measured 
quantity to make this epistemic claim, however. We will discuss simulations in the analysis of data later. 

 If the materiality of the computer and the surface features of the experimental praxis are irrel-
evant to the “deep epistemology” of simulation, perhaps simulations are more analogous to thought 
experiments or even should be conceived as computerized arguments? Claus Beisbart and John 
Norton ( Beisbart and Norton 2012 ;  Beisbart 2018 ) argue that computer simulations are simply 
computer-aided arguments: a single execution of a command by the computer is a logical inference 
step, and even a run of a complex simulation program therefore is nothing more than a massively 
long series of such steps. In this sense, a simulation (run) is a computerized argument. Even if the 
praxis of using, say, Monte Carlo techniques has many experiment-like features from the standpoint 
of the user, it does not invalidate this basic ontological and epistemological point. Simulation is 
computerized inference, not experimentation. 

 If this is correct, then this limits the epistemic reach of simulations. As  Beisbart (2018 ) claims, 
“Simulations implement a model that entails the results of the simulation. The simulations can thus 
not refute these very assumptions. Nor can they refute other assumptions, unless the model of the 
simulations has independent support” (p. 191). For Beisbart, simulations are  overcontrolled , meaning 
that there is nothing left for nature to say because all of the relevant causal information is already in 
the computer code.  Morgan (2002 ,  2003 ,  2005  ; see also  Giere 2009 ) puts this in the following way: 
that although simulations can surprise just like experiments, they can never  confound . In other words, 
given that the computer simulation can only take into account causal factors that are explicitly writ-
ten in the programming code, it cannot take into account confounders, namely, causal factors that 
have an e� ect on the phenomenon of interest but that the experimenter does not know about or 
does not know that they have such e� ects. 

 There are, in fact, two interrelated philosophical questions in the discussion that compares exper-
iments and simulations. (1) Are simulations to be evaluated epistemically as experiments, expressions 
of theory, arguments, a new kind of mathematics, or  sui generis ? (2) Are simulations epistemically on 
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a par with experiments? It is clear that even if the practice of simulation were admittedly comparable 
to experimentation, this would not yet be su�  cient for giving simulations the probative force of 
experiments. What is the purpose of asking whether simulations and experiments are “on a par”? 
Is it to provide guidance for scientists in choosing between these methods? It is commonplace that 
simulations are heavily used especially when other methods cannot be employed in the fi rst place. 
 Roush (2019 ) argues, however, that this is irrelevant: 

  That there are questions for which the simulation we are able to do is more reliable than 
any experiment we can do gives no reason to deny the superiority of a comparable experi-
ment that we cannot, or cannot yet, do. 

 (p. 4889)  

 One must thus ask, what is the relevant epistemic situation in which one can compare them? The 
epistemic situation determines what the researchers know about the world and the applicability of 
their methods ( Achinstein 2001 ). Roush (2019) argues that, in comparing the two, one must start 
from an epistemic situation in which one has a given question about the actual world to which one 
does not know the answer. One is then asked to make a choice, and Roush argues that one should 
choose an experiment if the correct answer is determined in part by something one does not know. 
If the arguments for the epistemic superiority of experiments are to have a normative punch, one 
would have to come up with circumstances in which it is possible to conduct both an experiment 
and a simulation (see also Parke 2014). 

 The problem is that, despite the barrage of arguments for the superiority of experiments, it is 
very di�  cult to apply such arguments to actual cases from science. Perhaps the superiority question 
is ill-posed and we should start asking di� erent questions. However, the discussion has not been use-
less. The supporters of the superiority thesis have contributed by describing the various limitations 
to the probative force of simulations, and the defenders of simulations have shown various ways in 
which simulations usefully contribute to empirical research.  

  2.3 Epistemic Opacity and Understanding 

 Even if we accept that what the computer does is a long series of deductive steps and that the content 
of the results cannot go beyond the content of the assumptions (barring considerations of truncation, 
etc.), to treat a single run as an argument is not very enlightening from the epistemological perspec-
tive, as any such run is  epistemically opaque  to the user: the relationship between the stipulated initial 
conditions and the simulation result cannot be “grasped” by a cognitively unaided human being 
( Humphreys 2004 : 147–150;  Lenhard 2006 ). Even if the simulation results were, in some sense, 
already built into the program, it is impossible to deny that the results are often novel to the simula-
tor. This brings us to the questions of novelty and understanding. 

  Barberousse and Vorms (2014 ) point out that any interesting sense of novelty in simulation 
results should be separated altogether from that of surprise; both computations and experiments 
can produce previously unknown, yet not really surprising results. Furthermore, even though what 
the simulation does is to “unfold” the logical content of the programmed computational model, 
computer simulations can clearly produce surprising novelty in terms of results that are  qualitatively
di� erent from the assumptions of the computational model ( El Skaf and Imbert 2013 ). Many agent-
based models especially produce phenomena that are, in some sense,  emergent  relative to the model 
assumptions. Paul  Humphreys (2004 ) has defi ned such qualitative novelty as conceptual emergence: 
a result R is conceptually emergent relative to a conceptual framework F when its adequate descrip-
tion or representation requires a conceptual apparatus that is not in F. Note that this characterization 
renders novelty to be relative to the concepts used to describe the results. 
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 A further and distinct question from the novelty of simulation results is whether simulations can 
provide explanations of the modeled phenomena in the same way that analytical models do. Simula-
tions are subject to considerably milder analytic tractability constraints and, hence, can do away with 
many of the distorting idealizations and tractability assumptions. However, the very fact that a simu-
lation model can do away with such assumptions often makes the simulation model itself di�  cult to 
understand. Complex simulations can increase predictive power, but is our understanding improved 
by replacing a puzzling phenomenon with its puzzling simulation? 

 Whether simulations are somehow explanatorily special depends, to some degree, on which 
theory of explanation one favors. Proponents of agent-based simulations usually favor a causal-
mechanistic conception of explanations and argue that social mechanisms can only be adequately 
modeled by agent-based models [although  Grüne-Yano�  (2009 ) denies that agent-based simula-
tions could provide causal-mechanistic explanations]. Social simulationist Joshua Epstein crystallized 
the appeal of agent-based  generative  explanations in his motto, “If you didn’t grow it, you didn’t 
explain it” ( 1999  ; see  Davis 2018 ). Even though economists are usually committed to some form 
for a discussion of methodological individualism, they have not embraced this idea of generative 
explanations in economics.  Lehtinen and Kuorikoski (2007 ) argued that an important reason for 
mainstream economists’ resistance to agent-based simulations is their implicit adherence to non-
mechanistic criteria of understanding, and specifi cally to a conception of economic understanding 
in line with Kitcher’s unifi cationist model of explanation: economic understanding is constituted by 
deriving results using a small set of stringent economic argument patterns (analytic model templates). 
In agent-based simulations, the derivation part of this activity is outsourced to the computer, and the 
modeling assumptions may not resemble the premises in these argument patterns. 

 We will next survey the most important uses of simulations in economics and the more specifi c 
philosophical questions related to them.   

  3. Simulations in Economics 

  3.1 Simulating Data and Monte Carlo 

 The preceding discussions have diverted attention from important di� erences between di� erent 
kinds of simulations. Note that the vast majority of data that economists use for the purpose of 
testing their theories are observational, not experimental. Hence, in economics the more relevant 
di� erence is between observational data and data generated with a simulation ( Reiss 2011 ). The dis-
tinctive methodological questions related to simulations that concern data manipulation and analysis 
may have important consequences for genuine substantive questions. 

 Let us fi rst consider an example from macroeconomics. According to the real business cycle 
(RBC) theorists in the 1990s, macroeconomic fl uctuations are caused by technology shocks. 
RBC theorists provided empirical evidence for this claim using specifi c data-analysis techniques. 
Their argument was that their vector autoregression (VAR) model fi t the data better when tech-
nology shocks were added as a regressor. (See Henschen, Chapter 20, on VAR.)  Hoover and 
Salyer (1998 ) used a simulation to construct simulated data sets to show that the increase in fi t 
provided by the technology shocks was entirely due to the specifi c statistical methods used by 
the RBC theorists, irrespective of whether or not the data were generated with a process includ-
ing technology shocks. The conclusion is that the specifi c data-analysis technique is unreliable 
because it seemingly indicates a statistical relationship between X and Y, even when we know 
that X is not there. We could not have known this by looking at empirical data because we 
cannot control whether the true data-generating process (DGP) contains X – this is what the 
empirical research tries to fi nd out in the fi rst place. Simulated data are thus necessary for this 
kind of counterfactual analysis. 
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 Monte Carlo experiments often study the properties of statistical distributions and statistical 
research tools and concepts. We saw earlier why Monte Carlo simulations are so prevalent in econo-
metrics: econometricians and statisticians are constantly developing new statistical tools for analyzing 
and processing data, but how do we know whether, say, a proposed estimator performs adequately? 
As these techniques have grown more complex and computationally taxing, in practice the only way 
to test such performance is to generate simulated data and then see whether the estimator fi nds the 
right characteristics of the data. One cannot use empirical data for this purpose because their DGP 
usually cannot be precisely known. In contrast, because the simulated DGP is created by the mod-
eler herself, it can be used as a benchmark in evaluating the performance of estimators: overcontrol 
is necessary for this kind of study. (See Spanos, Chapter 29, on the philosophy of econometrics.) 

 As  Winsberg (2015 ) notes, the standard defi nitions of simulation that emphasize mimicking a 
target system with a computational model do not quite do justice to Monte Carlo methods. Monte 
Carlo simulations often do not mimic any spatiotemporal objects or processes, and the randomness 
on which the method is based is not normally meant to be a claim about the object or process of 
interest ( Beisbart and Norton 2012 ;  Grüne-Yano�  and Weirich 2010 ).  Grüne-Yano�  and Weirich 
(2010 ) argue that, as Monte Carlo methods lack the mimicking aspect, they should be counted as 
calculations not simulations. 

 The randomness is typically the result of using a  pseudorandom number generator  (PRNG), an 
algorithm that gives rise to a complicated deterministic process that produces data mimicking the 
distributional properties of genuine random processes. Thus, there is also a mimicking relation in 
Monte Carlo methods, but it holds between the generated data and a probability distribution. Nev-
ertheless, mere mimicking should not be su�  cient for distinguishing simulations from calculations, 
as one simply typing 5 + 7 on Matlab and producing the resulting datum 12 may be said to mimic 
the result of writing 5 + 7 on a piece of paper but, clearly, performing this calculation on Matlab 
does not count as a simulation. 

 Is the question of whether Monte Carlo should be considered a simulation merely a termino-
logical one? One way to consider what is relevant with defi nitions is to determine which aspects of 
a method are epistemically important. The aforementioned mimicking relation between the data 
generated by a Monte Carlo method and the distributional properties of a mathematical object is 
only relevant if it fails, and it can fail only in those cases in which the di� erence between genuinely 
random and pseudorandom numbers makes a di� erence. Monte Carlo methods are quite multifac-
eted, however, in that what is being mimicked with a model that embeds the PRNG varies. The 
mimicandum can be at least a spatiotemporal target system (see  Galison 1996 ), a data-generating 
process for a variable, the distributional properties of empirical data, and a mathematical function (as 
in most applications of Markov Chain Monte Carlo). This suggests that some applications of Monte 
Carlo should be counted as simulations, whereas some are mere calculations. 

 We propose that the relevant di� erence lies in whether the correct performance of the PRNG 
along with the other deductive capabilities of the computer is su�  cient for the epistemic evaluation 
of the model. If it is, the method counts as a computation. If one also needs to consider whether the 
model  that embeds the PRNG correctly mimics its target, the method counts as simulation. Here we 
are using the word “target” to mean whatever a model represents. Consider, for example, a Monte 
Carlo study that endeavors to model a data-generating process that in reality contains a systematic 
bias. The model generates simulated data by using a description of the data-generating process that 
uses a normal distribution from a PRNG. Clearly, it is not su�  cient to provide epistemic justifi ca-
tion to this model by appealing to the fact that its PRNG correctly mimics the normal distribution. 
One also has to consider whether the bias as well as other aspects of the DGP is correctly modeled. 

 This is not the case with Monte Carlo methods that count as computation. Consider, for exam-
ple, calculation of the value of π with a Monte Carlo method that uses the uniform distribution (see, 
e.g., Grüne-Yano�  and Weirich (2010) for a simple description). The correctness of this calculation 
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depends on how precise the calculation must be. If it does not need to be very precise, the epis-
temic performance is guaranteed as long as the pseudorandom numbers from the PRNG are not 
too far from the underlying analytic distribution and the computer is not making any mistakes in 
the calculation.  

  3.2 DSGE 

 Whereas Monte Carlo methods were argued to be the most prevalent form of simulation in eco-
nomics, dynamic stochastic general equilibrium (DSGE) models are arguably the most infl uential 
ones, in terms of both theory and policy. They are also controversial, and, as with Monte Carlo, their 
popularity is accompanied by an insistence on viewing them as simply computational methods and 
downplaying their role as true simulations. 

 The DSGE modeling strategy stems from combining  Kydland and Prescott’s (1982 ) real business 
cycle model with added New Keynesian assumptions about wage setting, imperfect competition, 
and sticky pricing. The main reason for resorting to computer simulation is that because the whole 
economy is to be represented in the model, the systems of equations are not analytically solvable 
because of excessive complexity. This complexity has been seen as necessary because of the demand 
for microfoundations, which in turn are taken as a necessary condition for a macroeconomic model 
to function in policy analysis. The New Keynesian add-ons have been introduced to remedy the 
dramatic empirical shortcomings of the RBC model built on rational expectations and the repre-
sentative consumer. Nevertheless, despite these fi xes, whether the core DSGE still fundamentally 
misrepresents the most important structural macroeconomic relations remains a contested issue (see 
Kuorikoski and Lehtinen 2018). 

 One of the biggest changes in the last decade is that DSGE modelers are now frantically 
developing models in which the assumption of a single representative agent is replaced with two 
or three di� erent representative agents to model important heterogeneities (e.g.,  Kaplan et al. 
2018 ;  Ravn and Sterk forthcoming ). This has had important methodological consequences. 
Authors are now often reporting that they have simplifi ed the model because otherwise it would 
take too much time to compute the results. This refl ects the fact that the models have become 
so complex that the modelers are facing computational trade-o� s between making more realistic 
assumptions concerning heterogeneous agents and less realistic assumptions concerning other 
aspects of the model. More importantly, the loss of analytical tractability makes it di�  cult to fi g-
ure out which features of the models are really making a di� erence in the results (e.g.,  Acharya 
and Dogra 2020 ). 

 Another interesting aspect of current DSGE modeling is that there is very little critical discus-
sion about the implications of the discretization of the underlying analytical model (Velupillai and 
Zambelli (2011) provide some remarks). Johannes  Lenhard (2019 : 33) argues that because real 
numbers must be represented by truncated values in such models, the information lost in trunca-
tion may lead to major errors when the procedure is iterated a large number of times. Lenhard is 
using climate modeling as a case study, and he criticizes “a common and infl uential belief about 
simulation models based on the incorrect idea that the discrete versions of models depend com-
pletely on the theoretical models” (Ibid., 24). Economists working with DSGE models seem to 
share this belief. Indeed, macroeconomists seem to accept this kind of computation  precisely because
it does not have any independent epistemic contribution in their models (see also  Lehtinen and 
Kuorikoski 2007 ;  Lenhard 2019 : 137). We are not arguing that it would be important to analyze 
the role of truncation errors in DSGE models. These models have so many other more serious 
problems that discussing the problems of discretization might merely misorient the e� orts to make 
them better.  
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  3.3 Agent-Based Macroeconomics 

 For many, the inability to predict and analyze the fi nancial crisis constitutes a damning indictment 
for the representative agent and rational expectations underlying the DSGE paradigm. After the cri-
sis, agent-based macroeconomic models have become much more popular than before. Agent-based 
(AB) models provide much more fl exibility in modeling heterogeneity, interaction with limited 
information, and computational capacities (e.g.,  Borrill and Tesfatsion 2011 ). There are now sev-
eral groups engaging in AB macro modeling, and many of them no longer feel the need to discuss 
methodology. Instead, they just produce their models. This is a sign that the agent-based approach is 
taking o�  in an important way. Furthermore, some eminent economists like Joseph Stiglitz are now 
using AB models ( Caiani et al. 2016 ), and the chief economist of the Bank of England is writing 
methodological papers in favor of them ( Haldane and Turrell 2018 ,  2019 ). In addition, there are 
plenty of papers marketing the agent-based methodology in macroeconomics ( Fagiolo and Roven-
tini 2017 ;  Caverzasi and Russo 2018 ;  Dilaver et al. 2018 ;  Dosi and Roventini 2019 ) 

 Yet, while there are plenty of AB macro papers being published, we have not seen a single one at 
the very top of the journal hierarchy. We will now look into aspects of AB models that many macro-
economists consider unattractive. Comparison of the reception of DSGE simulations, which can be 
appreciated within the fi rst tradition of viewing simulations as computational solutions to intractable 
sets of equations, and agent-based macro models, which more clearly embody the second tradition 
of viewing simulations as imitations of processes ( Durán 2021 ), sheds light on how economists see 
the proper place of computer simulation in their fi eld. 

  Windrum et al. (2007 ) presented four interrelated categories of criticisms of AB models: 

  1. There is little or no understanding of the connection among the set of highly heterogeneous 
models that have been developed. 

 2. Lack of comparability between the models that have been developed. With many degrees of 
freedom, almost any simulation output can be generated by an AB model. 

 3. The lack of standardized techniques for analyzing and constructing AB models. 
 4. Empirical validation of AB models is di�  cult or is currently lacking.  

 Let us consider these criticisms in reverse order. Although many early agent-based models in macro-
economics were not tested with empirical data, we do not know of any argument to the e� ect that it 
would be intrinsically harder to empirically validate simulation models than analytical models. After 
all, it took more than two decades to develop the  Kydland and Prescott (1982 ) model into one that 
can be estimated and that provides at least a reasonable fi t to empirical data ( Smets and Wouters 2003 ). 
Empirical validation of models also includes making predictions about the future development of the 
economy. In this respect, agent-based models are still unsatisfactory: we do not know of any agent-
based models that are competitive in forecasting comparisons and tournaments. On the other hand, 
methods of estimating agent-based models are being developed (e.g.,  Delli Gatti and Grazzini 2020 ), 
and it might only be a matter of time before agent-based models mature su�  ciently to be used in 
forecasting too [see  Fagiolo et al. (2019 ) for a philosophically oriented account of these developments]. 

 The lack of standardized techniques for developing agent-based models is also, at least partly, a 
contingent feature of their current state of development. Practically all DSGE modelers use the same 
program (Dynare) to discretize their analytical models, and as the community of agent-based model-
ers grows, it may well develop a similar specialized language to specifi cally study macroeconomic 
AB models. 

 In contrast, the fi rst two criticisms point to deeper di�  culties in agent-based modeling. 
The fl exibility of AB modeling is also its most problematic characteristic [as acknowledged by 

Omistaja
Strikeout

Omistaja
Note
change brackets to parentheses



Aki Lehtinen and Jaakko Kuorikoski

364

agent-based modelers themselves, e.g.,  LeBaron and Tesfatsion (2008 )]. Consider, for example, 
 de Grauwe’s (2011 ) model. This agent-based model is able to generate macroeconomic fl uctua-
tions endogenously. Given that the fi nancial crisis of 2008–2009 could not be explained with 
DSGE models at the time, this could be taken as a major achievement. The problem, however, 
is that this model, just like many other agent-based models, provides su�  cient but not necessary 
conditions for a result (e.g.,  Tubaro 2011 ). “Growing” the crisis simply does not su�  ce as an 
explanation because it leaves open the possibility that the result could have been obtained with 
di� erent assumptions (see also  Silverman 2018 ). This is why a demonstration of the robustness 
of the results is particularly crucial for agent-based models (e.g.,  Muldoon 2007 ;  Durán and 
Formanek 2018 ). 

 More generally, given that agent-based models are more opaque than other kinds of simulation, 
it is important to be able to make systematic comparisons between di� erent models. This kind of 
comparability is important in order to solve what  Lehtinen (forthcoming ) calls “Duhemian prob-
lems”; as similar macro outcomes may be the result of several di� erent individual behaviors and sev-
eral possible mechanisms translating such behaviors into macro outcomes, it is important to be able 
to see how any given modifi cation to the model a� ects the outcomes. The solution of Duhemian 
problems requires comparability among models and, thus, some common elements in a family of 
models. From this perspective, heterogeneity among the agent-based models is inexcusable when it 
is combined with the ease with which one can generate di� erent results with agent-based models. 
It is no wonder that DSGE macroeconomists consider engaging in agent-based macro as a “walk on 
the wild side” (see  Napoletano 2018 ). 

 Before we see how the agent-based macroeconomists have reacted to these di�  culties, it is useful 
to consider a perspective from the natural sciences. Lenhard and Winsberg have argued ( Lenhard and 
Winsberg 2010 ;  Lenhard 2017 ) that it is practically impossible to solve Duhemian problems in cli-
mate modeling, which is also based on discretizations (for a dissenting view, see  Jebeile and Ardourel 
(2019 )). They argue that one can only see the e� ects of changing a module in the results concerning 
the whole globe. These models also require the calibration of a large number of parameters, they 
exhibit important feedback loops between model parts, and the parts are knit together with ad hoc 
Kluges. Whatever the plausibility of these arguments is in the context of climate modeling, they are 
surely not less plausible in macroeconomics. The main di� erence between climate models and mac-
roeconomic models is that climate models are partly based on established physical theory that is not 
questioned by anyone, whereas DSGE macro is based on “microeconomic” theory (of intertemporal 
utility maximization) that is commonly taken to be false, even by those who argue in favor of DSGE 
models (e.g.,  Christiano et al. 2018 ). 

 Such problems indicate that it is very di�  cult to solve Duhemian problems with a single model. 
Macroeconomists proceed to solve Duhemian problems by studying a benchmark model (see espe-
cially  Vines and Wills 2018 ): the DSGE model provides a benchmark in the sense that it contains 
elements known to all researchers, and the macrolevel consequences of modifi cations and additions 
to the benchmark therefore remain mostly tractable. 

 Agent-based modelers have taken the criticism that their models are not comparable with each 
other or with the DSGE models seriously. Some have tried to provide a stripped-down version of 
what they consider to be the consensus way of diverging from the DSGE models, even labeling the 
resulting model a “benchmark” ( Lengnick 2013 ;  Caiani et al. 2016 ).  Dawid and Delli Gatti (2018 ) 
discover an emerging consensus in their review of agent-based macroeconomics.  Dawid et al. (2019 ) 
provide extensive documentation on one of the main agent-based macro models so as to facilitate 
using and replicating it. Finally,  Gobbi and Grazzini (2019 ) provide a bridge between DSGE and 
agent-based approaches by constructing a model that is solved with agent interaction, but otherwise 
employs all of the standard assumptions of DSGE models. They show that as long as one uses rational 
expectations with intertemporal maximization and so on, the results of the AB model are highly 
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similar to the DSGE benchmark. This suggests that the assumption of an instantaneous general equi-
librium does not drive the results. 

 Even though all of these e� orts will surely help to make agent-based models more acceptable 
to broader audiences, some obstacles remain. DSGE models were widely adopted by major central 
banks between 2004 and 2011. Central banks require fi rst, that their macro models can provide a 
systematic causal account of what is happening in the economy and what would happen if various 
policies were to be implemented, and second, that they can predict the future at least as well as other 
models. The fi rst DSGE model that is commonly thought to be good enough was that of  Smets and 
Wouters (2003 ). At present, agent-based macro models are almost, but not quite, good enough in 
these respects for these purposes. Moreover, central bank economists must be able to demonstrate 
the economic mechanisms at work in the model in such a way that the decision-makers do not need 
to trust the modelers but rather can see for themselves how the model comes up with its results – the 
model has to provide a coherent economic story and agent-based models are not always transparent 
in this way.   

  4. Conclusions: Simulation and � eoretical Progress in Economics 

 Paul  Humphreys (2009 ) stated that the growing importance of computational methods within most 
fi elds of science forces us to fundamentally reconsider the traditional anthropocentric epistemol-
ogy, in which knowledge claims are, in the end, evaluated in terms of the perspective and cognitive 
capacities of human agents. The reception of computational methods in economics can be seen as a 
conservative reaction to this  anthropocentric predicament . Simulation methods that can be conceptual-
ized simply in terms of computational solutions to analytically intractable mathematical problems 
(Durán’s fi rst tradition of understanding simulation) are readily accepted in the mainstream meth-
odological palette, whereas simulations that are more about directly mimicking dynamic processes in 
the modeled phenomena rather than computational extensions of existing theory (Durán’s second 
tradition) face methodological resistance. 

 Simulation is thus accepted as a computational tool for calculating the consequences of economic 
theory, but theory building itself is still seen as lying solely in the purview of the mind of the human 
economist. Many economists have been taught to consider theory solely as a matter of analytical 
mathematics. Consider, for example, Lucas: 

  I loved the Foundations. Like so many others in my cohort, I internalized its view that if 
I couldn’t formulate a problem in economic theory mathematically, I didn’t know what 
I was doing. I came to the position that mathematical analysis is not one of the many ways 
of doing economic theory: it is the only way. Economic theory is mathematical analysis. 
Everything else is just pictures and talk. 

 (Lucas 2001: 9)  

 From this point of view, the fact that simulations do not have axioms or theorems, and that they 
look more like experimentation, generates resistance among economists to engage in them ( Fontana 
2006 ). This also means that conceptually emergent results from agent-based simulations cannot eas-
ily be accepted into theory as there is, by defi nition, no way to derive them from the axioms. 

 We hypothesize that this is also an important di� erence between the role of simulations in phys-
ics and in economics. In physics there is plenty of trust in physical theory as an accurate description 
of physical phenomena, and computer simulations built on this theory can therefore be regarded 
as good, or even superior, substitutes for material experiments (along the second tradition). In 
economics, theory is seen probably for good reasons more as a tool for thinking about rather than 
a literally true description of economic behavior. Econophysics is an interesting comparison case 
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in this respect, but we cannot pursue this project here (however, see, e.g.,  Schinckus and Jovanovic 
2013  and Jhun, Chapter 23). 

  Humphreys (2009 ) also outlined two possible ways in which the anthropocentric predicament 
can develop further. In the hybrid scenario, the role of the human cognitive agent remains episte-
mologically essential, and the computational aids need to be developed in such a way that respects 
human cognitive limitations. Economists accept the hybrid scenario in data analysis, forecasting, and 
policy analysis, but not yet in theory development. In the automated scenario, the computational 
aids are no longer built with human limitations in mind and science becomes fully automated. 
Although much has been said about the revolutionary nature of artifi cial intelligence (AI) and big 
data in the sciences in general, it remains to be seen how the mainstream will react to this challenge 
in their own fi eld.  
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